技術通報

磷酸鐵鋰(LFP)與其他鋰電池及汽油安全性比較報告

2025年11月10日

磷酸鐵鋰(LFP)電池在鋰電池家族中以安全、穩定與長壽命著稱。相較於含鎳、鈷的 NCM 與 NCA 系統·LFP 雖能量密度略低·但具備極佳的熱穩定性、低成本與環境友善性。LFP 電池特別適用於儲能系統、電動巴士及工業用途·能在長期高頻充放電中維持性能。以下各表彙整不同鋰電池系統的主要差異與特性·並於最後以表格比較靜置狀態下鋰電池與汽油的安全表現。

表 1 主要化學系統比較

電池種類	正極材料	常見應用	特性摘要
LFP (LiFePO ₄)	磷酸鐵鋰	儲能系統、電動巴士、商 用車	安全穩定、壽命長、成本低
NCM (LiNiCoMnO ₂)	鎳鈷錳氧化物	高端乘用車電池	能量高但熱穩定性差
NCA (LiNiCoAlO ₂)	鎳鈷鋁氧化物	特斯拉早期車款	高能量密度、成本高
LCO (LiCoO ₂)	鈷酸鋰	筆電、手機	高能量但壽命短、熱穩定 性差

表 2 安全性與熱穩定性比較

項目	LFP	NCM / NCA	LCO
熱穩定性	**** (>270°C)	★★☆☆☆(180-210°C)	★★☆☆☆(約 200℃)
熱失控機率	極低	中高	回
氧釋放	幾乎無(不助燃)	有(助燃)	有(助燃)
火災蔓延性	低	高	高
毒性產物	少量 CO、HF	較多CO、HF	較多CO、HF

鑫應材股份有限公司 · 竹北市 302 自強南路 8 號 5 樓之 10 · (03) 522-7900

技術通報

表 3 性能與能量密度比較

項目	LFP	NCM / NCA	LCO
能量密度(Wh/kg)	160–200	220–300	180–250
電壓平台 (V)	3.2	3.6–3.7	3.7
輸出功率密度	中高	高	中
低溫性能	稍差(<0℃容量降)	較佳	一般

表 4 壽命與循環性能比較

項目	LFP	NCM / NCA	LCO
循環壽命(80%容量)	3000-6000 次	800-1500 次	500-1000 次
容量衰退速度	緩慢	中等	快速
高溫壽命表現	優秀	一般	差

表 5 成本與資源依賴比較

項目	LFP	NCM / NCA	LCO
原料成本	低(鐵、磷)	高(鎳、鈷)	很高(高鈷)
供應風險	低	高	高
製造成本(\$/kWh)	70–90	100–130	120–150

表 6 應用差異比較

應用領域	LFP	NCM / NCA	LCO
儲能系統(ESS)	優秀 (安全壽命長)	一般	不適用
巴士/商用車	優秀(穩定)	中等	不適用
乘用車	一般(續航略低)	優秀(能量高)	不適用
筆電/手機	不佳	佳	最適用
高溫/震動環境	穩定可靠	較敏感	較敏感

鑫應材股份有限公司·竹北市 302 自強南路 8 號 5 樓之 10 · (03) 522-7900

表 7 整體比較總覽

項目	LFP	NCM / NCA	LCO
安全性	****	*****	***
能量密度	*****	****	****
循環壽命	****	****	****
成本	****	****	****
溫度穩定性	****	****	***
綜合評價	適合安全與長壽命應用	適合高能量需求應用	限消費電子使用

在靜止狀態下,鋰電池與汽油的安全性存在根本差異。LFP 為固態封裝系統,不具揮發性,除非受到嚴重外力或電氣異常,否則不會自燃或爆炸;相反地,汽油為揮發性液體,蒸氣極易被火源點燃。因此在儲存、運輸及靜置環境中,LFP的安全性遠高於汽油,代表未來能源系統向電化與低碳轉型的重要優勢。

表 8 静止狀態下鋰電池與汽油安全性比較

項目	鋰電池(特別是 LFP)	汽油
能量密度(Wh/kg)	200–300	約 12,000
閃火點	無(固態材料)	約 –40℃
自燃溫度	約 130-250℃ (內短路時)	約 280°C (蒸氣點燃)
主要危險來源	過充、內短路、外力損傷	蒸氣揮發、靜電或火源點燃
靜止安全性	極高(無燃燒條件)	低 (蒸氣隨時可燃)
洩漏風險	幾乎無	高 (液體易揮發)
結論	靜止狀態下極為安全	靜止時仍具高燃爆風險